Table M.5.6.1.2–1.—Possible Additional Bounding Radiological Accident Source Terms under the Proposed Action

Radionuclide	Quantity Present (Ci)	Release Fraction	Quantity Released (Ci)
Depleted uranium ^a			
Uranium-234	1.7×10^{-5}	1×10^{-3}	1.7×10^{-8}
Uranium-235	7.4×10^{-7}	1×10^{-3}	8.0×10^{-10}
Uranium-238	3.2×10^{-5}	1×10^{-3}	3.2×10^{-8}
Krypton-83m	1.5×10^{-1}	1.0	1.5×10^{-1}
Krypton-85	1.2×10^{-4}	1.0	1.2×10^{-4}
Krypton-85m	4.2×10^{-1}	1.0	4.2×10^{-1}
Krypton-87	2.4	1.0	2.4
Krypton-88	1.6	1.0	1.6
Niobium-98	1.2×10^{3}	1×10^{-3}	1.2
Iodine-131	5.9×10^{-2}	0.5	3.0×10^{-2}
Iodine-132	1.5×10^{-1}	0.5	7.5×10^{-2}
Iodine-132m	1.9×10^{-3}	0.5	9.5×10^{-4}
Iodine-133	6.4×10^{-1}	0.5	3.2×10^{-1}
Iodine-133m	1.0×10^{1}	0.5	5.0
Iodine-134	7.5	0.5	3.8
Iodine-134m	3.8	0.5	1.9
Iodine-135	2.2	0.5	1.1
Iodine-136	2.8×10^{2}	0.5	1.4×10^{2}
Technetium-134	2.2×10^{1}	1×10^{-3}	2.2×10^{-2}
Xenon-133	1.2×10^{-1}	1.0	1.2×10^{-1}
Xenon-133m	5.0×10^{-3}	1.0	5.0×10^{-3}
Xenon-134m	1.5×10^{1}	1.0	1.5×10^{1}
Xenon-135	6.7×10^{-1}	1.0	6.7×10^{-1}
Xenon-135m	3.0×10^{-1}	1.0	3.0×10^{-1}
Xenon-137	1.6×10^{2}	1.0	1.6×10^{2}
Xenon-138	5.3×10^{1}	1.0	5.3×10^{1}

March 2005 Appendix M-97

Table M.5.6.1.2–1.—Possible Additional Bounding Radiological Accident Source Terms under the Proposed Action (continued)

Radionuclide	Quantity Present (Ci)	Release Fraction	Quantity Released (Ci)
Highly enriched uranium ^b	Quantity 11 escate (C1)	11010450 1140404	Quantity Iteleasea (62)
Uranium-234	6.9×10^{-3}	1×10^{-3}	6.9×10^{-6}
Uranium-235	2.0×10^{-4}	1×10^{-3}	2.0×10^{-7}
Uranium-238	1.8×10^{-6}	1×10^{-3}	1.8×10^{-9}
Krypton-87	4.1	1.0	4.1
Krypton-88	2.6	1.0	2.6
Niobium 98	1.2×10^{3}	1×10^{-3}	1.2
Iodine-131	5.1×10^{-2}	0.5	2.6×10^{-2}
Iodine-132	1.3×10^{-1}	0.5	6.5×10^{-2}
Iodine-132m	3.0×10^{-2}	0.5	1.5×10^{-2}
Iodine-133	6.1×10^{-1}	0.5	3.1×10^{-1}
Iodine-133m	9.8×10^{1}	0.5	4.9×10^{1}
Iodine-134	7.9	0.5	4.0
Iodine-134m	1.7×10^{1}	0.5	8.5
Iodine-135	2.1	0.5	1.1
Iodine-136	1.8×10^{2}	0.5	9.0×10^{1}
Tellurium-134	2.0×10^{1}	1×10^{-3}	2.0×10^{-2}
Xenon-133	1.2×10^{-1}	1.0	1.2×10^{-1}
Xenon-133m	4.9×10^{-3}	1.0	4.9×10^{-3}
Xenon-134m	3.2×10^{2}	1.0	3.2×10^{2}
Xenon-135	6.7×10^{-1}	1.0	6.7×10^{-1}
Xenon-135m	1.7	1.0	1.7
Xenon-137	1.6×10^{2}	1.0	1.6×10^{2}
Xenon-138	5.6×10^{1}	1.0	5.6×10^{1}
Tracers: iodine is bounding and representative			
Iodine-124	6.2×10^{-2}	0.5	3.1×10^{-2}
Iodine-125	6.4×10^{-2}	0.5	3.2×10^{-2}
Iodine-126	1.5×10^{-1}	0.5	7.5×10^{-2}

Appendix M-98 March 2005

TABLE M.5.6.1.2–1.—Possible Additional Bounding Radiological Accident Source Terms under the Proposed Action (continued)

Radionuclide	Quantity Present (Ci)	Release Fraction	Quantity Released (Ci)
Inner containment vessel, weapons grade plutonium			
(non-yield ^c)	3 g		
Plutonium-238	1.0×10^{-2}	1×10^{-3}	1.0×10^{-5}
Plutonium-239	1.8×10^{-1}	1×10^{-3}	1.8×10^{-4}
Plutonium-240	4.0×10^{-2}	1×10^{-3}	4.0×10^{-5}
Plutonium-241	9.1×10^{-1}	1×10^{-3}	9.1×10^{-4}
Plutonium-242	2.4×10^{-6}	1×10^{-3}	2.4×10^{-9}
Americium-241	1.6×10^{-3}	1×10^{-3}	1.6×10^{-6}
Inner containment vessel,			
weapons grade plutonium			
(with yield ^d)	1 g		
Plutonium-238	3.4×10^{-3}	1×10^{-3}	3.4×10^{-6}
Plutonium-239	5.8×10^{-2}	1×10^{-3}	5.8×10^{-5}
Plutonium-240	1.3×10^{-2}	1×10^{-3}	1.3×10^{-5}
Plutonium-241	3.0×10^{-1}	1×10^{-3}	3.0×10^{-4}
Plutonium-242	7.9×10^{-7}	1×10^{-3}	7.9×10^{-10}
Nickel-65	1.6×10^{-5}	1×10^{-3}	1.6×10^{-8}
Niobium 96	3.9×10^{-6}	1×10^{-3}	3.9×10^{-9}
Niobium-97	2.8×10^{-5}	1×10^{-3}	2.8×10^{-8}
Niobium-97	5.5×10^{-4}	1×10^{-3}	5.5×10^{-7}
Niobium-98	1.6×10^{-2}	1×10^{-3}	1.6×10^{-5}
Molybdenum-93m	1.3×10^{-6}	1×10^{-3}	1.3×10^{-9}
Molybdenum-99	5.5×10^{-5}	1×10^{-3}	5.5×10^{-8}
Technetium-99	2.2×10^{-5}	1×10^{-3}	2.2×10^{-8}

Source: LLNL 2003d.

March 2005 Appendix M-99

Depleted uranium is already slightly radioactive; the half-life of uranium-238 (dominant isotope) is 4.5 × 10⁹ years. The assumed composition is 99.64% uranium-238, 0.36% uranium-235, and 0.0028% uranium-234. The quantities listed correspond to the maximum additional quantity used for the proposed action of 100 g. Fission products would result from a single target (maximum of 2.2 g) subject to a 45-MJ fusion yield, 4.6×10^{16} fissions, and would include residual fission products from previous yield experiments (60 @ 20 MJ). The fission product inventories would be peak post-experiment inventories.

Highly enriched uranium is already slightly radioactive; the half-life of uranium-235 (dominant isotope) is 7.0×10^8 years. The quantity listed corresponds to the maximum quantity used for the proposed action of 100 g. Fission products would result from a single target (maximum of 1.2 g) subject to a 45-MJ fusion yield, 4.6×10^{16} fissions, and would include residual fission products from previous yield experiments (60 @ 20 MJ). The fission product inventories would be peak post-experiment inventories.

Thorium-232 is already slightly radioactive, with a half-life of 1.4×10^{10} yrs. The quantity listed corresponds to the maximum quantity used under the Proposed Action of 450 g. Fission products would result from a single target (maximum of 7.9 g) subject to a 45-MJ fusion yield, 5.3×10^{16} fissions, and would include residual fission products from previous yield experiments (60 @ 20 MJ). The fission product inventories would be peak post-experiment inventories.

The assumed composition of weapons grade material is 0.02% plutonium-238, 93.85% plutonium-239, 5.8% plutonium-240, 0.3% plutonium-241, 0.015% americium-241, and 0.02% plutonium-242. Other isotopic mixes could be used as long as their impacts would be within the bounds described here. The fission products would result from a single target (maximum of 1 g) subject to a 45-MJ fusion yield, 3.2 × 10¹⁶ fissions. Because only a single experiment would occur within a containment vessel, only the fission products resulting from this single experiment are included. The fission product inventories would be peak post-experiment inventories.

Ci = curies; g = gram; MJ = megajoules.